Neonatal hypoxia leads to clinically significant fatty liver, presumably due to disturbances in lipid metabolism. To fully evaluate lipid metabolism, the present study analyzed the complete lipid profile of the brain, liver, and ingested stomach contents of 7-day-old rats exposed to hypoxia from birth. Hypoxia had negligible direct effects on lipid metabolism in the brain. Conversely, hypoxia exhibited direct effects on hepatic lipid metabolism that could not be fully explained by changes in dietary intake. Triacylglyceride concentration was significantly increased in the hypoxic liver but remained unchanged in the brain and stomach contents. Diacylglyceride concentration was increased in both the brain and liver, and this was associated with increased diacylglyceride in the stomach contents. Most n-3 and n-6 fatty acids were increased in the liver, but not in the brain, of hypoxic pups. These changes did not reflect those measured in the stomach contents. Saturated fatty acid concentrations were increased in both the hypoxic brain and liver, and these changes reflected those in the stomach contents. Hypoxia also increased total phospholipid concentration in the brain and stomach contents. We conclude that neonatal hypoxia indirectly affects specific lipid and fatty acid concentrations in the brain and liver through alterations in the absorbed stomach contents. Hypoxia also exhibits some direct affects through modulation of metabolic pathways in situ, mostly in the liver. In this respect, the neonatal brain exhibits tighter control on lipid homeostasis than the liver during neonatal hypoxia.