Optical interferometry has emerged as a cornerstone technology for high-precision length measurement, offering unparalleled accuracy in various scientific and industrial applications. This review provides a comprehensive overview of the latest advancements in optical interferometry, with a focus on grating and laser interferometries. For grating interferometry, systems configurations ranging from single-degree- to multi-degree-of-freedom are introduced. For laser interferometry, different measurement methods are presented and compared according to their respective characteristics, including homodyne, heterodyne, white light interferometry, etc. With the rise of the optical frequency comb, its unique spectral properties have greatly expanded the length measurement capabilities of laser interferometry, achieving an unprecedented leap in both measurement range and accuracy. With regard to discussion on enhancement of measurement precision, special attention is given to periodic nonlinear errors and phase demodulation methods. This review offers insights into current challenges and potential future directions for improving interferometric measurement systems, and also emphasizes the role of innovative technologies in advancing precision metrology technology.