A review of recent advances in simulations of turbulent filaments with relevance to stellarators is presented. Progress in performing global edge turbulence simulations is discussed as well as results from seeded filament simulations with applications to the unique environment of a stellarator island divertor–including abrupt changes in connection length and highly-nonuniform curvature drive. It is determined that the motion of filaments generally follows the average curvature, but strong nonuniform perturbations can shear a filament and reduce the overall transport. The coherence of filament transport is also determined to be influenced by the collisionality and electron plasma beta. By simplifying the simulation geometries, large parameter scans can be performed which accurately reflect the macroscopic transport of filaments observed in Wendelstein 7-X. Comparisons to experiments are discussed, and a the develeopment of a synthetic diagnostic has been able to inform experimental measurements by quantifying potential sources of error in filament propagation measurements. A discussion of the necessary extension to more complex multifluid models, and the scope for near-term filament simulations in stellarators, is provided.