Abstract:What has turned into highly complex and somewhat misunderstood efficiency loss mechanisms occurring in light-emitting diodes (LEDs) based on the InN-GaN material system at high injection levels are discussed. Suggestions are made as to the dominant mechanism(s) in an open forum format as well as pointing out some of the shortcomings of the methodologies used and premises forwarded. It is unequivocally known that increased junction temperature would cause a reduction in radiative power due to mainly the reduction in radiative recombination efficiency. Another obvious mechanism is the asymmetry in doping in wide bandgap semiconductors, such as GaN, wherein the hole concentration lags well behind that of electrons in the active region. Because an electron and a hole are required for radiative recombination, the radiative efficiency cannot keep up with increasing carrier injection due to progressively lagging hole population. This results in either electron escape without radiative recombination or electron accumulation, which in turn changes the internal bias of the device, manifested as reduced internal forward bias, which reduces the rate of increase in light intensity.Some of the reports ascribe the efficiency loss at high injection levels to Auger recombination (mainly through indirect and recently reportedly direct deductions) as the main and or the only source of efficiency loss by in many cases simply relying on the temperature and injection independent (not well taken) A, B, C coefficients to fit a third order polynomial to the efficiency vs. injection current. As for the direct deduction, the spectroscopic analysis of Auger kicked hot electrons as they traverse through the Γ and L bands before being emitted into the vacuum by means of cesiated surface challenges the existing theories and some experiments regarding carrier scattering and Γ -L separation. Despite just a few reports to the contrary, the bulk of the resonant optical emission experiments do not support the Auger argument as being the main cause. In parallel, there exists a body of theoretical and experimental reports for electron overflow of ballistic/quasi-ballistic electrons traversing the active region to p-GaN, escaping recombination altogether in the active region. In fact and from the get go, the LED industry ubiquitously employed, and continues to do so, an (Al,In)GaN electron-blocking layer (EBL) to prevent electron escape for improved light output that in and of itself would more than suggest that the electron escape (overflow) does indeed occur. The only adverse effect of EBL is * Correspondence: vavrutin@vcu.edu 269 AVRUTIN et al./Turk J Phys that it impedes hole injection due to the valence band offset between the p-type (Al,In)GaN EBL and p-GaN and also generates piezoelectric (if not lattice matched) and differential spontaneous polarization induced fields that pull down the conduction band edge at the interface reducing EBL's effectiveness. To at least reduce the aforementioned aggravating factors to some extent, the ele...