Regional climate simulation can generally be improved by using an RCM nested within a coarser-resolution GCM. However, whether or not it can also be improved by the direct use of a state-of-the-art GCM with very fine resolution, close to that of an RCM, and, if so, which is the better approach, are open questions. These questions are important for understanding and using these two kinds of simulation approaches, but have not yet been investigated. Accordingly, the present reported work compared simulation results over China from a very-fine-resolution GCM (VFRGCM) and from RCM dynamical downscaling. The results showed that: (1) The VFRGCM reproduces the climatologies and trends of both air temperature and precipitation, as well as inter-monthly variations of air temperature in terms of spatial pattern and amount, closer to observations than the coarse-resolution version of the GCM. This is not the case, however, for the inter-monthly variations of precipitation. (2) The VFRGCM captures the climatology, trend, and inter-monthly variation of air temperature, as well as the trend in precipitation, more reasonably than the RCM dynamical downscaling method. (3) The RCM dynamical downscaling method performs better than the VFRGCM in terms of the climatology and inter-monthly variation of precipitation. Overall, the results suggest that VFRGCMs possess great potential with regard to their application in climate simulation in the future, and the RCM dynamical downscaling method is still dominant in terms of regional precipitation simulation.