Most insulin is secreted in discrete pulses at an interval of ϳ6 min. Increased insulin secretion after meal ingestion is achieved through the mechanism of amplification of the burst mass. Conversely, in type 2 diabetes, insulin secretion is impaired as a consequence of decreased insulin pulse mass. -cell mass is reported to be deficient in type 2 diabetes. We tested the hypothesis that decreased -cell mass leads to decreased insulin pulse mass. Insulin secretion was examined before and after an ϳ60% decrease in -cell mass achieved by a single injection of alloxan in a porcine model. Alloxan injection resulted in stable diabetes (fasting plasma glucose 7.4 ؎ 1.1 vs. 4.4 ؎ 0.1 mmol/l; P < 0.01) with impaired insulin secretion in the fasting and fed states and during a hyperglycemic clamp (decreased by 54, 80, and 90%, respectively). Deconvolution analysis revealed a selective decrease in insulin pulse mass (by 54, 60, and 90%) with no change in pulse frequency. Rhythm analysis revealed no change in the periodicity of regular oscillations after alloxan administration in the fasting state but was unable to detect stable rhythms reliably after enteric or intravenous glucose stimulation. After alloxan administration, insulin secretion and insulin pulse mass (but not insulin pulse interval) decreased in relation to -cell mass. However, the decreased pulse mass (and pulse amplitude delivered to the liver) was associated with a decrease in hepatic insulin clearance, which partially offset the decreased insulin secretion. Despite hyperglycemia, postprandial glucagon concentrations were increased after alloxan administration (103.4 ؎ 6.3 vs. 92.2 ؎ 2.5 pg/ml; P < 0.01). We conclude that an alloxan-induced selective decrease in -cell mass leads to deficient insulin secretion by attenuating insulin pulse mass, and that the latter is associated with decreased hepatic insulin clearance and relative hyperglucagonemia, thereby emulating the pattern of islet dysfunction observed in type 2 diabetes. Diabetes 50: [2001][2002][2003][2004][2005][2006][2007][2008][2009][2010][2011][2012] 2001 T ype 2 diabetes is characterized by impaired glucose-mediated insulin secretion (1,2). This has been documented by demonstrating reduced first-phase insulin release in response to intravenous glucose (3,4) and impaired insulin release after glucose ingestion (1,5) and during a hyperglycemic clamp (6). Further analyses indicate that most insulin secretion is derived from discrete insulin secretory bursts (7,8), the mass of which is diminished in patients with type 2 diabetes (9). In addition, it has been reported that -cell mass may be decreased in patients with type 2 diabetes (10), although this remains controversial. Indeed, the role of any decrease in the -cell mass in the pathogenesis of impaired insulin secretion and the pathogenesis of hyperglycemia in type 2 diabetes remains uncertain.In the present study, we addressed the hypothesis that defective insulin secretion in type 2 diabetes can be recapitulated by a selective decreas...