In this work, the influencing factors and corresponding theoretical models for the surface topography in diamond turning process are reviewed. The surface profile on one tool feed is the elementary unit of surface topography. The influences coupled with the models of the duplication effect of the tool edge profile, material spring back, and plastic side flow are outlined in this part. In light of the surface profile on one tool feed and “trim principle”, the modeling methods of surface topography along the radial direction (2D surface topography) are commented. Moreover, the influence of the vibration between the diamond tool and workpiece on the 2D surface topography is discussed, and the theoretical models are summarized. Finally, the issues for modeling of 3D surface topography, particularly the influences of material defects, are analyzed. According to the state-of-the-art surface topography model of the diamond turned component, future work in this field is therefore predicted.