Solid tumors continue to affect millions of people worldwide. Increasingly sophisticated diagnostic tools contribute to the high incidence rates for some tumor types, and treatment options continue to expand. However, the progression of solid tumors represents a challenge for the appropriate treatment of individual patients because of the relative inaccuracy of current prognostic markers, including the widely used Tumor-Nodes-Metastasis (TNM) staging system, to predict the course of disease. As a result, both over-and undertreatment are clinical realities in the management of patients diagnosed with solid tumors. Therefore, populationbased screening programs that increase the overall cancer incidence rates are controversial, as they may do little to improve the patient's quality of life. Consequently, there is a strong need to develop novel and independent markers of prognosis. In this context, we review the use of telomeres as prognostic markers for solid tumors, including cancers from lung, breast, prostate, colon, brain and head and neck. Telomeric sequences, the repetitive DNA at the end of human chromosomes, are mediators of genomic stability and can undergo length alterations during tumor initiation and progression. In a number of studies reviewed here, these alterations, measured as telomere attrition and elongation, have been shown either to be associated with clinical markers of disease progression or to be independent markers of cancer prognosis. We conclude from these studies that careful assessment of telomere length or its proxies, such as telomere DNA content, will be part of novel risk assessment and prognostic modalities for patients with solid tumors. ' 2006 Wiley-Liss, Inc.