The masking mechanisms of the bitter taste of propantheline bromide (PB) and oxyphenonium (OB) bromide by native and modified cyclodextrins, saccharides, surfactants, organic acids, nonionic and anionic polymers, and other compounds were investigated with ion selective electrodes. The intensity of the bitter taste for a mixed solution of cyclodextrin with PB or OB was quantitatively explained from the observed electromotive force with the following assumptions: the complex and the masking agent do not have any tastes and the bitter taste is independent of other tastes. Sodium dodecyl sulfate reduced the bitter taste remarkably, and this reduction was also explicable on the basis of the same mechanism. Sodium taurodeoxycholate enhanced the bitter taste, because of its strong bitterness, although it formed 1 : 1 complexes with PB and OB. The masking mechanism of saccharides was ascribed to overcoming the weak bitterness of the drug by the strong sweetness. l l-Carrageenan suppressed the bitter taste remarkably. This suppression was ascribed to the binding of PB and OB to l l-carrageenan, the effect of the solution viscosity on the bitter taste, and the covering of the bitter taste receptor by l lcarrageenan. It was suggested that the moderate masking by other polymers was attributable to the effect of the solution viscosity or the receptor covering. Native and modified b b-cyclodextrins, sodium dodecyl sulfate, l l-carrageenan, Tween 20, and sodium carboxymethyl cellulose are good masking agents for the bitter tastes of PB and OB. The drug ion selective electrode is a useful tool for understanding of the masking mechanism of the bitter taste, screening of masking agents, and estimation of appropriate concentrations of the masking agents.