Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Designing an efficient fingerprint recognition technique is an ill-posed problem. Recently, many researchers have utilized machine learning techniques to improve the fingerprint recognition rate. The random forest (RF) is found to be one of the extensively utilized machine learning techniques for fingerprint recognition. Although it provides good recognition results at significant computational speed, still there is room for improvement. RF is not so-effective for high-dimensional features and also when features contain both discrete and continuous values at the same time. Therefore, in this paper, a novel similarity measure-based random forest (NRF) is proposed. The proposed technique, initially, computes both mutual information and conditional entropy. Thereafter, it uses three designed if-then rules to obtain final information measure. Additionally, to obtain feature set for fingerprint dataset, dual-tree complex wavelet transform is used to evaluate complex detail coefficients. Thereafter, ring project is considered to compute significant moments from these complex detail coefficients. Finally, information gain-based feature selection technique is used to select potential features. To prevent over-fitting, 20-fold cross validation is also used. Extensive experiments are considered to evaluate the effectiveness of the proposed technique. The comparative analyses reveal that the proposed technique outperforms the existing techniques in terms of accuracy, f-measure, sensitivity, specificity, kappa statistics and computational speed.
Designing an efficient fingerprint recognition technique is an ill-posed problem. Recently, many researchers have utilized machine learning techniques to improve the fingerprint recognition rate. The random forest (RF) is found to be one of the extensively utilized machine learning techniques for fingerprint recognition. Although it provides good recognition results at significant computational speed, still there is room for improvement. RF is not so-effective for high-dimensional features and also when features contain both discrete and continuous values at the same time. Therefore, in this paper, a novel similarity measure-based random forest (NRF) is proposed. The proposed technique, initially, computes both mutual information and conditional entropy. Thereafter, it uses three designed if-then rules to obtain final information measure. Additionally, to obtain feature set for fingerprint dataset, dual-tree complex wavelet transform is used to evaluate complex detail coefficients. Thereafter, ring project is considered to compute significant moments from these complex detail coefficients. Finally, information gain-based feature selection technique is used to select potential features. To prevent over-fitting, 20-fold cross validation is also used. Extensive experiments are considered to evaluate the effectiveness of the proposed technique. The comparative analyses reveal that the proposed technique outperforms the existing techniques in terms of accuracy, f-measure, sensitivity, specificity, kappa statistics and computational speed.
Random and pseudo-random number and bit sequence generators with a uniform distribution law are the most widespread and in demand in the market of pseudo-random generators. Depending on the specific field of application, the requirements for their implementation and the quality of the generator’s output sequence change. In this article, we have optimized the structures of the classical additive Fibonacci generator and the modified additive Fibonacci generator when they work together. The ranges of initial settings of structural elements (seed) of these generators have been determined, which guarantee acceptable statistical characteristics of the output pseudo-random sequence, significantly expanding the scope of their possible application, including cybersecurity. When studying the statistical characteristics of the modified additive Fibonacci generator, it was found that they significantly depend on the signal from the output of the logic circuit entering the structure. It is proved that acceptable statistical characteristics of the modified additive Fibonacci generator, and the combined generator realized on its basis, are provided at odd values of the module of the recurrent equation describing the work of such generator. The output signal of the combined generator has acceptable characteristics for a wide range of values of the initial settings for the modified additive Fibonacci generator and the classic additive Fibonacci generator. Regarding the use of information security, it is worth noting the fact that for modern encryption and security programs, generators of random numbers and bit sequences and approaches to their construction are crucial and critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.