In medical diagnostics, therapeutic, laboratory, intensive care unit devices, and machines application, two form of Electrical Energy is utilized. Alternatives current (AC) and Direct current (DC) form. In this paper an inverter driver system with a display model is made using MATLAB and its specific tool box of Simulink, the process will involve converting single phase alternating current power to direct current using rectifier made from ordinary normal diodes then converted to three phase using three-arm insulated gate bipolar transistors this is commonly known as inverter bridge which is sufficient enough to run three phase loads depending on the application requirement. The system uses a five-level inverter with low levels of distortions and ripples in the equipment output, this increase and improves the performance of the system. Using carefully selected passive and active elements such as capacitor resistors, inductors, diodes, and transistor system in inverter, decreases the number of switches and boosts the efficiency of the system. This inverter drive system helps us to run three phase machines in the health facility at the same frequency of single phase. The inverter system allows a smaller smoothing capacitor in the DC-AC link as proposed. Large smoothing capacitors are conventionally essential in such converters to absorb power ripple at twice the frequency of the power supply. The proposed network topology consists of an indirect matrix converter and an active snubber to absorb the power ripple, and does not necessitate a reactor or large smoothing capacitor. Simulation result is shown using MATLAB software and used to verify system operation principle as well as circuit development and their control mechanism for a How to cite this paper: Muhamad, M.M., Kibirige, D., Uzorka, A. and John, U.K. (2022) Design and Simulation of an Inverter Drive System with a Display for a Renewable Energy System in the Rural Isolated Communities of Uganda.