The singularity category of a ring makes only the modules of finite projective dimension vanish among the modules, so that the singularity category is expected to characterize a homological property of modules of infinite projective dimension. In this paper, among such modules, we deal with eventually periodic modules over a left artin ring, and, as our main result, we characterize them in terms of morphisms in the singularity category of the left artin ring. As a corollary, we prove that, for the class of finite dimensional algebras over a field, being eventually periodic is preserved under singular equivalence of Morita type with level. Moreover, we determine which finite dimensional connected Nakayama algebras are eventually periodic when the ground field is algebraically closed.