“…TheDMDcontainsnumerousfeaturesthatareeitherirrelevanttothepredictivetaskorredundantto others.Bothirrelevanceandredundancyinafeaturesethaveanegativeeffectontheperformance andcomplexityofmodelsbuiltondata (Kohavi&John,1997;Guyon&Elisseeff,2003;Hermanaet al,2013).Thedoorlockstatusisunlikelytoprovideanyinsightintotheworkloadlevelofthedriver, forexample,andenginespeedishighlyredundanttothevehiclespeed.Forsimplicity,thesignalsin theDMDwerereducedbyhandtothe30listedinTable6.Thismeantthattherewere3480features intotalthatcouldpotentiallybeusedtobuildamodel,afterfeatureextraction. Supervisedfeatureselectionwasappliedinchoosingthefeaturesfromthisfullset.Inparticular, SymmetricUncertainty(SU)(Wittenetal.,2011)andminimalRedundancyMaximalRelevancy (mRMR) selection (Peng, Long, & Ding, 2005;Hermana et al, 2013;Taylor et al, 2014) were used.SUisavariantofMutualInformation(MI),thatisnormalisedbythemeanentropyofthetwo variablestomitigatethebiasMIhastowardsfeaturesofhighdimensionalities.MIisdefinedas:…”