The superconductor-insulator transition (SIT), one of the most fascinating quantum phase transitions, is closely related to the competition between superconductivity and carrier localization in disordered thin films. Here, superconducting TiO x films with different oxygen contents were grown on Al 2 O 3 substrates by a pulsed laser deposition technique. The increasing oxygen content leads to an increase of disorder, a reduction of carrier density, an enhancement of carrier localization, and therefore a decrease of superconducting transition temperature. A fascinating SIT emerges in cubic TiO x films with increasing oxygen content and its critical sheet resistance is close to the quantum resistance h/(2e) 2 ~6.45 kΩ. The scaling analyses of magnetic field-tuned SIT exhibit that the critical exponent products zν increase from 1.02 to 1.31 with increasing disorder. Based on the results, the SIT can be described by the "dirty boson" model, and a schematic phase diagram for TiO x films was constructed.