Coastal marsh survival may be compromised by sea‐level rise, limited sediment supply, and subsidence. Storms represent a fundamental forcing for sediment accumulation in starving marshes because they resuspend bottom material in channels and tidal flats and transport it to the marsh surface. However, it is unrealistic to simulate at high resolution all storms that occurred in the past decades to obtain reliable sediment accumulation rates. Similarly, it is difficult to cover all possible combinations of water levels and wind conditions in fictional scenarios. Thus, we developed a new method that derives long‐term deposition rates from short‐term deposition generated by a finite number of storms. Twelve storms with different intensity and frequency were selected in Terrebonne Bay, Louisiana, USA and simulated with the 2D Delft3D‐FLOW model coupled with the Simulating Waves Nearshore (SWAN) module. Storm impact was analyzed in terms of geomorphic work, namely the product of deposition and frequency. To derive the long‐term inorganic mass accumulation rates, the new method generates every possible combination of the 12 chosen storms and uses a linear model to fit modeled inorganic deposition with measured inorganic mass accumulation rates. The linear model with the best fit (highest R2) was used to derive a map of inorganic mass accumulation rates. Results show that a storm with 1.7 ± 1.6 years return period provides the largest geomorphic work, suggesting that the most impactful storms are those that balance intensity with frequency. Model results show higher accumulation rates in marshes facing open areas where waves can develop and resuspend sediments. This method has the advantage of considering only a few real scenarios and can be applied in any marsh‐bay system.