Background
Similar to many other animals, the honey bee Apis mellifera relies on a beneficial gut microbiota for regulation of immune homeostasis. Honey bees exposed to agrochemicals, such as the herbicide glyphosate or antibiotics, usually exhibit dysbiosis and increased susceptibility to bacterial infection. Considering the relevance of the microbiotaâimmunity axis for host health, we hypothesized that glyphosate exposure could potentially affect other components of the honey bee physiology, such as the immune system.
Results
In this study, we investigated whether glyphosate, besides affecting the gut microbiota, could compromise two components of honey bee innate immunity: the expression of genes encoding antimicrobial peptides (humoral immunity) and the melanization pathway (cellular immunity). We also compared the effects of glyphosate on the bee immune system with those of tylosin, an antibiotic commonly used in beekeeping. We found that both glyphosate and tylosin decreased the expression of some antimicrobial peptides, such as apidaecin, defensin and hymenoptaecin, in exposed honey bees, but only glyphosate was able to inhibit melanization in the bee hemolymph.
Conclusions
Exposure of honey bees to glyphosate or tylosin can reduce the abundance of beneficial gut bacteria and lead to immune dysregulation.