2010
DOI: 10.1016/j.jmaa.2010.04.007
|View full text |Cite
|
Sign up to set email alerts
|

Refined asymptotics for eigenvalues on domains of infinite measure

Abstract: In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting function of the Laplace operator on unbounded twodimensional domains.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?