2022
DOI: 10.1007/jhep08(2022)006
|View full text |Cite
|
Sign up to set email alerts
|

Refined topological vertex with ON-planes

Abstract: We propose refined topological vertex formalism for 5-brane systems with ON-planes by introducing a new vertex associated with reflection over an ON-plane, which gives rise to new vertex and edge factors. We test our proposal against various 5d đ’© = 1 gauge theories which can be realized as 5-brane webs with ON-planes, which include D-type quiver theories. In particular, we compute the refined partition functions for 6d E-string theory on a circle as well as 5d SU(3) theory at the Chern-Simons level 9, which c… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(2 citation statements)
references
References 70 publications
0
2
0
Order By: Relevance
“…The first approach is the ADHM description, which has been studied in previous works such as [10][11][12][13][14]. The second approach is the fivebrane construction, which has been extensively studied in [15][16][17][18][19][20][21][22][23][24][25][26]. Our main results are as follows: first, we demonstrate that the poles of the JK residue integral arising from the ADHM descriptions can be classified by 2d and 4d Young diagrams in the unrefined limit.…”
Section: Introductionmentioning
confidence: 68%
“…The first approach is the ADHM description, which has been studied in previous works such as [10][11][12][13][14]. The second approach is the fivebrane construction, which has been extensively studied in [15][16][17][18][19][20][21][22][23][24][25][26]. Our main results are as follows: first, we demonstrate that the poles of the JK residue integral arising from the ADHM descriptions can be classified by 2d and 4d Young diagrams in the unrefined limit.…”
Section: Introductionmentioning
confidence: 68%
“…In section 3.3, we used the refined topological vertex to compute the Wilson loop expectation values for SU(2) theory from SU(2) theories with fundamental flavors. It is also interesting to recover our result in the Sp(1) theory via the refined topological vertex with ON-planes [88,89]. Even though we used the topological vertex to compute the partition function, the same partition function can also be computed from ADHM construction directly.…”
Section: Jhep08(2022)207mentioning
confidence: 93%