In multiple time scale molecular
dynamics, the use of isokinetic constraints along with massive thermostatting
has enabled the adoption of very large integration steps, well beyond
the limits imposed by resonance artifacts in standard algorithms.
In this work, we present two new contributions to this topic. First,
we investigate the velocity distribution and the temperature–kinetic
energy relationship associated with the isokinetic Nosé–Hoover
family of methods, showing how they depend on the number of thermostats
attached to each atomic degree of freedom. Second, we investigate
the performance of these methods in the calculation of solvation free
energies, the determination of which is often key for understanding
the partition of a chemical species among distinct environments. We
show how one can extract this property from canonical (constant-NVT)
simulations and compare the result to experimental data obtained at
a specific pressure. Finally, we demonstrate that large time steps
can, in fact, be used to improve the efficiency of these calculations
and that attaching multiple thermostats per degree of freedom is beneficial
for effectively exploring the configurational space of a molecular
system.