“…Gheorghiu et al [15] used the abstraction-refinement paradigm [11] to infer the necessary alphabet of the untimed assumption A for AGR. Howar et al [22] also used the paradigm on the alphabet for inferring abstract λ (a, xa = 3) λ 1 0 (s0) (a, xa = 0) 0 0 (s1) (a, xa = 1) 1 1 (s2) (a, xa = 2) 0 0 (a, xa = 3) 0 0 (a, xa ≥ 3) 0 0 (a, 0 ≤ xa ≤ 1) 0 0 (a, 1 ≤ xa ≤ 2) 0 0 (a, 2 ≤ xa ≤ 3) 0 0 (a, 0 ≤ xa ≤ 2) 0 0 (a, 1 ≤ xa ≤ 3) 0 0 (a, 0 ≤ xa ≤ 3) 0 0 (a, xa = 0)(a, xa = 0) 0 0 (a, xa = 0)(a, xa = 1) 0 0 (a, xa = 0)(a, xa = 2) 0 0 (a, xa = 0)(a, xa = 3) 0 0 (a, xa = 0)(a, xa ≥ 3) 0 0 (a, xa = 0)(a, 0 ≤ xa ≤ 1) 0 0 (a, xa = 0)(a, 1 ≤ xa ≤ 2) 0 0 (a, xa = 0)(a, 2 ≤ xa ≤ 3) 0 0 (a, xa = 0)(a, 0 ≤ xa ≤ 2) 0 0 (a, xa = 0)(a, 1 ≤ xa ≤ 3) 0 0 (a, xa = 0)(a, 0 ≤ xa ≤ 3) 0 0 (a, xa = 1)(a, xa = 0) 0 0 (a, xa = 1)(a, xa = 1) 0 0 (a, xa = 1)(a, xa = 2) 0 0 (a, xa = 1)(a, xa = 3) 1 0 (a, xa = 1)(a, xa ≥ 3) 0 0 (a, xa = 1)(a, 0 ≤ xa ≤ 1) 0 0 (a, xa = 1)(a, 1 ≤ xa ≤ 2) 0 0 (a, xa = 1)(a, 2 ≤ xa ≤ 3) 0 0 (a, xa = 1)(a, 0 ≤ xa ≤ 2) 0 0 (a, xa = 1)(a, 1 ≤ xa ≤ 3) 0 0 (a, xa = 1)(a, 0 ≤ xa ≤ 3) 0 0 Table Constructed by TL * sg automata with respect to given concrete behavior such that determinism is preserved.…”