2018
DOI: 10.20944/preprints201807.0516.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Refining Land-Cover Classification Maps Based on Dual-Adaptive Majority Voting Strategy for Very-High-Resolution Remote Sensing Images

Abstract: Land-cover classification that uses very-high-resolution (VHR) remote sensing images is a topic of considerable interest. Although many classification methods have been developed, there is still room for improvements in the accuracy and usability of classification systems. In this paper, a novel post-processing approach based on a dual-adaptive majority voting strategy (D-AMVS) is proposed for improving the performance of initial classification maps. D-AMVS defines a strategy for refining each label of a class… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?