Abstract. Late Miocene tectonic changes in MediterraneanAtlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a tenfold increase and near-freshening. Recent proxy-and modelbased evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96-5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled oceanatmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate.The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid-high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland-IcelandNorwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35 • N by 1.5-6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 • C, but up to −8 • C) and weaker warming in the south (up to +0.5 to +2.7 • C).These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean-Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.