The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTAt high luminosities black hole binaries show spectra with a strong disc component accompanied by an equally strong tail where at least some of the electrons are non-thermal. We reanalyse the simultaneous ASCA-RXTE-OSSE data from the 1998 outburst of XTE J1550-564, which span 0.7-1000 keV and remain the best data available of a black hole binary in this state. We reassess the importance of electron-positron pair production using a realistically high value of the source compactness for the first time. The lack of an observable annihilation line together with the observed γ -ray flux beyond 511 keV constrains the maximum electron Lorentz factor to be ≤10, and the slope of the injected electrons to ≤2.5. We also use the fast (10-50 Hz) variability spectrum to constrain the spatial dependence of the electron heating and acceleration. We find that the spectrum of the fast variability is consistent with being fully thermal, so that the observed non-thermal emission is produced from further out in the flow.