2020
DOI: 10.1007/s00208-020-02030-4
|View full text |Cite
|
Sign up to set email alerts
|

Reflection maps

Abstract: Given a reflection group G acting on a complex vector space V , a reflection map is the composition of an embedding X → V with the quotient map V → C p of G. We show how these maps, which can highly singular, may be studied in terms of the group action. We give obstructions to A-stability and A-finiteness of reflection maps and produce, in the unobstructed cases, infinite families of finitely determined map-germs of any corank. We relate these maps to conjectures of Lê, Mond and Ruas.with f 0 = f . Un unfoldin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
7
0
3

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
3

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 51 publications
(60 reference statements)
0
7
0
3
Order By: Relevance
“…More precisely, in Theorem 4.4, we prove that if f is a corank q monomial map-germ, then f is A-finite if and only if f is A-equivalent to the join of the identity in C n−q with q parameterized curves. These monomial normal forms can be seen as A-finite reflection maps, as defined in [12]. As a corollary of Theorem 4.4 we obtain infinitely many families of A-finite map-germs, not necessarily monomial.…”
Section: Introductionmentioning
confidence: 84%
“…More precisely, in Theorem 4.4, we prove that if f is a corank q monomial map-germ, then f is A-finite if and only if f is A-equivalent to the join of the identity in C n−q with q parameterized curves. These monomial normal forms can be seen as A-finite reflection maps, as defined in [12]. As a corollary of Theorem 4.4 we obtain infinitely many families of A-finite map-germs, not necessarily monomial.…”
Section: Introductionmentioning
confidence: 84%
“…Each g i is a homogeneous finitely determined map germ of corank 2, of same type, (2, 3, 5; 1, 1) (see [22,Ex. 16] and [23,Ex.…”
Section: Natural Questions and Examplesmentioning
confidence: 99%
“…Uma aplicação desta forma é conhecida como aplicação de reflexão. Estas aplicações foram estudadas recentemente por Peñafort-Sanchis no interessante trabalho [48]. Nesse artigo, são obtidos novos importantes resultados sobre determinação finita e estabilidade.…”
Section: O 1 O Contra-exemplounclassified
“…Nesse artigo, são obtidos novos importantes resultados sobre determinação finita e estabilidade. A seguir, vamos usar um método diferente do apresentado em [48] para estudar as aplicações da forma f (x, y) = (x n , y m , p(x, y)), seguindo de perto as ideias do trabalho de Marar e Nuño-Ballesteros em [33].…”
Section: O 1 O Contra-exemplounclassified
See 1 more Smart Citation