Among all the existing methods to solve the eikonal equation, three methods are chosen to verify accuracy, symmetry, reciprocity and error propagation along large offsets of refracted waves in seismic near surface exploration context. Performance is extremely highlighted nowadays and accuracy is being neglected, then an eikonal solver poorly explored in geoscience is used. A classical solver, the Fast Iterative and the modified Fast Sweeping Method are applied in three modeling schemes: a simple two layers model, a large four layers and a complex benchmark model. The three methods compute the first arrival of refracted waves in high contrast media and the results are compared to the analytical solution. A circular geometry is considered in all experiments to explore the method applicability using full azimuth angles. On the first scheme, the errors in travel time are computed among the three methods using different model sample spacing and we discuss accuracy, symmetry and reciprocity of first arrivals. On the second scheme, three circular receivers are placed in different offsets to check errors along refracted wave propagation. Finally, the third scheme, four shots are strategically positioned over the SEG/EAGE Overthrust model in order to compare the full acoustic wavefield with the eikonal solvers and then check the similarities. Although the focus is on methods accuracy, the algorithm run time is also considered and the comparison shows that the modified Fast Sweeping Method is the most accurate. The most computational efficient eikonal solver is the Fast Iterative Method, but its geoscience applicability needs to be cautious, because of its inaccurate results.