Quantum technologies require pure states, which are often generated by extreme refrigeration. Heat-bath algorithmic cooling is the theoretically optimal refrigeration technique: it shuttles entropy from a multiparticle system to a thermal bath, thereby generating a quantum state with a high degree of purity. Here, we show how to surpass this hitherto-optimal technique by taking advantage of a single binary-outcome measurement. Our protocols can create arbitrary numbers of pure quantum states without any residual mixedness by using a recently discovered device known as a quantum switch to put two operations in superposition, with postselection certifying the complete purification.