Since the emergence of SARS-CoV-2 in December 2019, Coronavirus Disease-2019 (COVID-19) has rapidly spread across the globe. Epidemiologic studies have demonstrated that age is one of the strongest risk factors influencing the morbidity and mortality of COVID-19. Here, we interrogate the transcriptional features and cellular landscapes of the aging human lung through integrative analysis of bulk and single-cell transcriptomics. By intersecting these age-associated changes with experimental data on host interactions between SARS-CoV-2 or its relative SARS-CoV, we identify several age-associated factors that may contribute to the heightened severity of COVID-19 in older populations. We observed that age-associated gene expression and cell populations are significantly linked to the heightened severity of COVID-19 in older populations.The aging lung is characterized by increased vascular smooth muscle contraction, reduced mitochondrial activity, and decreased lipid metabolism. Lung epithelial cells, macrophages, and Th1 cells decrease in abundance with age, whereas fibroblasts, pericytes and CD4+ Tcm cells increase in abundance with age. Several age-associated genes have functional effects on SARS-CoV replication, and directly interact with the SARS-CoV-2 proteome. Interestingly, ageassociated genes are heavily enriched among those induced or suppressed by SARS-CoV-2 infection. These analyses illuminate potential avenues for further studies on the relationship between the aging lung and COVID-19 pathogenesis, which may inform strategies to more effectively treat this disease.