Basket stars, that is, Ophiuroidea in Echinodermata, exhibit distinctive morphological characteristics with their complicatedly branched arms that can regenerate immediately after mutilation. Although, in brittle stars, that is, ophiuroids with nonbranched arms, the arm regeneration process following accidental trauma or autotomy have been morphologically and histologically observed in several species, few studies have so far been carried out on the regeneration of branched arms in basket stars. In this study, the developmental and morphological features of arm regeneration in Astrocladus dofleini (Gorgonocephalidae, Euryalida, Euryophiurida), one of the most common basket star species in Japanese waters, was anatomically and histologically investigated. Results clearly showed the following phases during the arm regeneration: (a) repair phase, (b) early regenerative phase, (c) intermediate regenerative phase, (d) advanced regenerative Phase I, and (e) advanced regenerative Phase II. The morphogenetic process during the arm regeneration in the basket star showed similar patterns to those of nonbranched arms observed in other ophiuroids. However, differences were also seen between the two ophiuroid types, that is, there were some developmental features specific to the basket star. In the early regenerative phase, branching of coelomic cavities was observed prior to the formation of other tissues, probably inducing the later morphogenesis of branched arms. In addition, hard skeletal ossicles form rapidly at the advanced regenerative Phase II. These developmental features may have led the evolution of bizarre morphologies seen in basket stars, probably contributing to the adaptation to shallow waters from deep‐sea habitats.