Significance: Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca 2+ channel function that influences myocyte contractility and electrophysiologic stability. Recent Advances: Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin-and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. Critical Issues: Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. Future Directions: Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field. Antioxid. Redox Signal. 18, 270-287.