In diabetes the structural and functional recovery of skeletal muscle is impaired due to persistent hyperglycemiainduced oxidative stress. Vitamin E is known to be essential antioxidant for maintains the skeletal muscle homeostasis thus preventing oxidative damages. This study is designed to explore the effect of d-α-tocopherol and d-δ-tocotrienol rich fraction (d-δ-TRF) on crushed muscle regeneration in both healthy and diabetic rats. Diabetes was induced through single subcutaneous injection of aqueous alloxan at the dose of 100 mg/kg. Twenty four albino rats were divided into four groups; healthy control, diabetic control, healthy treated and diabetic treated. Treated groups received 100 mg/kg of d-α-tocopherol and d-δ-TRF each, orally, daily for three weeks. Through a horizontal mid-thigh skin incision and splitting of the fascia gluteus maximus was approached and crushed with Kocher's forceps. Skin wound was closed with an absorbable suture. The crush-induced degenerative and regenerative changes in the muscle were studied by assessing the histological features, histomorphological measurements and biochemical analyses at the end of 3 rd weeks. One-way 'ANOVA' and Student's t-test were used for statistical analysis. All results revealed that the vitamin E isoforms have potency to maintain glycemic level, improve the antioxidant capacity and hasten the process of regeneration, revascularization, reinnervation and connective tissue remodeling in skeletal muscle after crush injury. It is therefore, concluded that the vitamin E isoforms are useful nutritional supplements for skeletal muscle functional and structural recovery in both healthy and diabetics.