A rovibrational model, including anharmonic, centrifugal, and Coriolis corrections, is used to calculate π, K,N, and Ʃ orbital and radial resonances. The four orbital excitations of the π meson correspond to the b(1235), π2(1670), b
3(2030), and π4(2250) resonances. Its first four radial excitations correspond to the π(1300), π(1800), π(2070), and π(2360) resonances. The orbital excitations of the K meson are interpreted as the K
1(1270), K
2(1770), K
3(2320), and K
4(2500) resonances; its radial excitations correspond to the K(1460) and K(1830) resonances. The N orbital excitations are identified with the N(1520), N(1680), N(2190), N(2220), and N(2600) resonances. The first four radial excitations of the N family correspond to the N(1440), N(1880), N(2100), and N(2300) resonances. The orbital excitations of the Ʃ baryon are associated with the Ʃ(1670), Ʃ(1915), Ʃ(2100), and Ʃ(2250) resonances, whereas its radial excitations are identified with the Ʃ(1660), Ʃ(1770), and Ʃ(1880) resonances. The proposed rovibrational model calculations show a good agreement with the corresponding experimental values and allow for the prediction of hadron resonances, thereby proving to be useful for the interpretation of excited hadron spectra.