Purpose: The use of Aspergillus ochraceus TCCC41060 for synthesis of 11α-OH-ethylgonendione, an important intermediate for synthesis of desogestrel-a major ingredient of the "third-generation" oral contraceptives, is hampered by its low regioselectivity of hydroxylation. In the present study, we sought to characterize gene(s) involved in steroid hydroxylation specificity in strain TCCC41060. Methods: Taking advantage of the fact that expression of the 11α-hydroxylase, a member of the cytochrome P450 family, is highly induced by steroid substrates, we combined RNA-seq, qRT-PCR, and yeast functional expression to search for responsible steroid hydroxylase gene(s). Results: Two highly inducible P450 genes (CYP68L8 and CYP68J5) were isolated and recombinant yeast cells expressing CYP68J5 were capable of 11α-hydroxylating both 16,17α-epoxyprogesterone and D-ethylgonendione. Disruption of CYP68J5 in strain TCCC41060 resulted in complete loss of hydroxylation activities towards Dethylgonendione, indicating that CYP68J5 was solely responsible for hydroxylation activity on D-ethylgonendione in TCCC41060. Conclusion: The above results demonstrated that low hydroxylation specificity of CYP68J5 on D-ethylgonendione fully accounted for high by-product contents in TCCC41060, thus pointing to a strategy to engineer 11αhydroxylase variants with higher hydroxylation specificity.