A library of steviol-based trifunctional chiral ligands was developed from commercially available natural stevisoide and applied as chiral catalysts in the addition of diethylzinc to benzaldehyde. The key intermediate steviol methyl ester was prepared according to literature procedure. Depending on the epoxidation process, both cis- and trans-epoxyalcohols were obtained. Subsequent oxirane ring opening with primary and secondary amines afforded 3-amino-1,2-diols. The ring opening with sodium azide followed by a “click” reaction with alkynes resulted in dihydroxytriazoles. The regioselective ring closure of N-substituted aminodiols with formaldehyde was also investigated. The resulting steviol-type aminodiols were tested against a panel of human adherent cancer cell lines (A2780, SiHa, HeLa, and MDA-MB-231). It was consistently found that the N-benzyl substituent is an essential part within the molecule and the ring closure towards N-benzyl substituted oxazolidine ring system increased the antiproliferative activity to a level comparable with that of cisplatine. In addition, structure–activity relationships were examined by assessing substituent effects on the aminodiol systems.