2022
DOI: 10.1016/j.future.2022.06.005
|View full text |Cite|
|
Sign up to set email alerts
|

Region aware dynamic task scheduling and resource virtualization for load balancing in IoT–fog multi-cloud environment

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 19 publications
(6 citation statements)
references
References 30 publications
0
5
0
1
Order By: Relevance
“…In fact, fog-cloud hierarchical task scheduling has been foreseen to be dominant for future heterogeneous network (HetNet) deployment, requiring systemic optimization regarding service-centric and user-centric performance, e.g., energy efficiency, QoS, overall latency, etc. [16]. However, complicated features with multi-layer modeling cannot be tackled with the abovementioned homogeneousfog-cloud-only task scheduling.…”
Section: Related Workmentioning
confidence: 99%
“…In fact, fog-cloud hierarchical task scheduling has been foreseen to be dominant for future heterogeneous network (HetNet) deployment, requiring systemic optimization regarding service-centric and user-centric performance, e.g., energy efficiency, QoS, overall latency, etc. [16]. However, complicated features with multi-layer modeling cannot be tackled with the abovementioned homogeneousfog-cloud-only task scheduling.…”
Section: Related Workmentioning
confidence: 99%
“…Відомі адаптивні методи для роботи у розподіленій системі [6], а у [7] використано алгоритми перенаправлення трафіку веб-сервера для балансування навантаження. Широко розповсюджені методи статичного [8] та динамічного балансування навантаження з використанням оперативної інформації про стан системи прийняття рішень на рівні завантаження CPU [9] та доступної пам'яті [10].…”
Section: Research Of Work Of a Single Server In A Clusterunclassified
“…The MFO algorithm is described as being made up of moths and flames in the quick summary. Moths are referred to as search agents in Equation ( 1), where N is total number of moths and M(t) is their organisational matrix that they use to search across the D-dimensional search space by eqn (21).…”
Section: Meta-heuristic Moth Flame Optimization With Chaotic Maps In ...mentioning
confidence: 99%
“…In [20], fuzzy dominance is used to enhance MOHEFT's performance, which maximises both makespan and cost index. Constrained optimization challenges in cloud fog platforms were related task scheduling problems that the author [21] formulated. It is suggested to handle these issues using an LBP-ACS strategy.…”
Section: Introductionmentioning
confidence: 99%