Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Pressure injuries pose significant health risks, especially for the elderly, immobile individuals, and those with sensory impairments. These injuries can rapidly become chronic, making initial diagnosis important. Due to the difficulty of transporting patients from local health facilities to higher-level general hospitals for treatment, it is essential to utilize telemedicine tools, such as chatbots, to ensure rapid initial diagnosis. Recent advances in artificial intelligence have demonstrated potential for medical imaging and disease classification. Ongoing research in the field of dermatological diseases focuses on disease classification. However, the assessment accuracy of artificial intelligence is often limited by unequal class distributions and insufficient dataset quantities. In this study, we aim to enhance the accuracy of artificial intelligence models by generating synthetic datasets. Specifically, we focused on training models for Pressure Injury assessment using both real and synthetic datasets. We used PI data at a domestic medical university. As part of our supplementary research, we established a chatbot system to facilitate the assessment of pressure injuries. Using both constructed and synthetic data, we achieved a top-1 accuracy of 92.03%. The experimental results demonstrate that combining real and synthetic data significantly improves model accuracy. These findings suggest that synthetic datasets can be effectively utilized to address the limitations of small-scale datasets in medical applications. Future research should explore the use of diverse synthetic data generation methods and validate model performance on a variety of datasets to enhance the generalization and robustness of AI models for Pressure Injury assessment.
Pressure injuries pose significant health risks, especially for the elderly, immobile individuals, and those with sensory impairments. These injuries can rapidly become chronic, making initial diagnosis important. Due to the difficulty of transporting patients from local health facilities to higher-level general hospitals for treatment, it is essential to utilize telemedicine tools, such as chatbots, to ensure rapid initial diagnosis. Recent advances in artificial intelligence have demonstrated potential for medical imaging and disease classification. Ongoing research in the field of dermatological diseases focuses on disease classification. However, the assessment accuracy of artificial intelligence is often limited by unequal class distributions and insufficient dataset quantities. In this study, we aim to enhance the accuracy of artificial intelligence models by generating synthetic datasets. Specifically, we focused on training models for Pressure Injury assessment using both real and synthetic datasets. We used PI data at a domestic medical university. As part of our supplementary research, we established a chatbot system to facilitate the assessment of pressure injuries. Using both constructed and synthetic data, we achieved a top-1 accuracy of 92.03%. The experimental results demonstrate that combining real and synthetic data significantly improves model accuracy. These findings suggest that synthetic datasets can be effectively utilized to address the limitations of small-scale datasets in medical applications. Future research should explore the use of diverse synthetic data generation methods and validate model performance on a variety of datasets to enhance the generalization and robustness of AI models for Pressure Injury assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.