Global warming has intensified the intensity of compound drought‐hot extremes (CDHEs), posing more severe impacts on human societies and ecosystems than individual extremes. The vulnerability of global terrestrial ecosystems under CDHEs, along with its key influencing factors, remains poorly understood. Based on multiple remote sensing data, we construct a Vine Copula model to appraise vegetation vulnerability under CDHEs, and attribute it to climatic and biotic factors for five different vegetation types. High vulnerability is detected in central and southern regions of North America, eastern and southern regions of South America, Southern Africa, northern and western Europe, and northern and eastern Australia. The drier the climate, the higher will be the vulnerability. Furthermore, biodiversity and biomass are key biotic factors influencing the vulnerability of various vegetation types, such that ecosystems with richer biodiversity and higher biomass have lower vulnerability to CDHEs. The findings deepen understanding of terrestrial ecosystem response to CDHEs.