This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Seed starch content (SSC) is a decisive factor influencing soy food quality. Variation in SSC affects the composition of major components, oil, and protein in soybean seeds. Therefore, understanding G × E interaction of SSC is important to produce soybeans with stable SSC. In the present study, G × E interactions of 17 soybean genotypes having different SSC (0.24-1.48%) and correlation of SSC with crude protein (CP) and crude fat (CF) were investigated. The genotypes were evaluated for SSC and other traits at two planting dates across three locations over two years (2015 and 2016). The genotype × year, genotype × location, and genotype × year × location interactions were found to be significant (P ≤ 0.001) for SSC, CP, and CF. The average SSC content was found to be higher in 2015 than in 2016. Late planted soybeans contained higher SSC than the early planting soybeans. The SSC was negatively affected by the average daily mean and minimum temperatures and cloudiness during the pod-filling stage. Based on the mean rank, IT189276 (1.39%) was observed to be the most stable genotype among the high starch containing soybeans. Significant (P ≤ 0.0001) negative correlations were found between SSC and CP as well as CP and CF contents. However, a significant (P ≤ 0.05) positive correlation was observed between SSC and CF content. Results of this study showed that SSC affects the seed protein and oil contents and is significantly influenced by the growing environments.