In addition to being an important instrument in the search for increasingly greater productivity, agricultural production with adequate use of irrigation systems significantly minimizes the impact on water resources. To meet high productivity and yield, as well as industrial quality, a series of studies on sugarcane cultivation are necessary. Despite being able to adapt to drought, sugarcane is still a crop highly dependent on irrigation to guarantee the best quality standards. Our study aimed to analyze the agronomic performance and technological attributes of two sugarcane cultivars, evaluating the vegetative and productive pattern, as well as the industrial quality of the cultivars RB92579 and SP80–1816, which were cultivated under split-irrigation management in the Sugarcane Research Unit of IF Goiano—Campus Ceres, located in the state of Goiás in the Central-West region of Brazil. A self-propelled sprinkler irrigation system (IrrigaBrasil) was used, duly equipped with Twin 120 Komet sprinklers (Fremon, USA). The cultivars were propagated vegetatively and planted in 0.25 m deep furrows with 1.5 m between rows. The experiment was conducted in a completely randomized design (CRD), with a bifactorial split-plot scheme (5 × 2), with four replications, where the experimental plots were subjected to one of the following five split-irrigation management systems: 00 mm + 00 mm; 20 mm + 40 mm; 30 mm + 30 mm; 40 mm + 20 mm; or 60 mm + 00 mm. At 60 and 150 days after planting (DAP), the following respective irrigation management systems were applied: 00 mm + 00 mm and 20 mm + 40 mm. Biometric and technological attributes, such as plant height (PH) and stem diameter (SD), were evaluated in this case at 30-day intervals, starting at 180 DAP and ending at 420 DAP. Measurements of soluble solids content (°Brix), apparent sucrose content (POL), fiber content (Fiber), juice purity (PZA), broth POL (BP), reducing sugars (RS), and total recoverable sugars (TRS) were made by sampling stems at harvest at 420 DAP. RB92579 showed total recoverable sugar contents 11.89% and 8.86% higher than those recorded for SP80–1816 under split-irrigation with 40 mm + 20 mm and 60 mm + 00 mm, respectively. Shoot productivity of RB92579 reached 187.15 t ha−1 under split-irrigation with 60 mm + 00 mm, which was 42.16% higher than the shoot productivity observed for SP80–1816. Both cultivars showed higher qualitative and quantitative indices in treatments that applied higher volumes of water in the initial phase of the culture, coinciding with the dry season. Sugarcane cultivar RB92579 showed a better adaptation to the prevailing conditions in the study than the SP80–1816 cultivar.