Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Globally, groundwater use is intensifying to meet demands for irrigation, urban supply, industrialization, and, in some instances, electrical power generation. In response to hydroclimatic variability, surface water is being substituted with groundwater, which must be viewed as a strategic resource for climate adaptation. In this sense, the supply of electricity for pumping is an adaptation policy tool. Additionally, planning for climate-change mitigation must consider CO 2 emissions resulting from pumping. This paper examines the influence of electricity supply and pricing on groundwater irrigation and resulting emissions, with specific reference to Mexico-a climate-water-energy 'perfect storm'. Night-time power supply at tariffs below the already-subsidized rates for agricultural groundwater use has caused Mexican farmers to increase pumping, reversing important water and electricity conservation gains achieved. Indiscriminate groundwater pumping, including for virtual water exports of agricultural produce, threatens the long-term sustainability of aquifers, non-agricultural water uses, and stream-aquifer interactions that sustain riparian ecosystems. Emissions resulting from agricultural groundwater pumping in Mexico are estimated to be 3.6% of total national emissions and are equivalent to emissions from transporting the same agricultural produce to market. The paper concludes with an assessment of energy, water, and climate trends coupled with policy futures to address these challenges.
Globally, groundwater use is intensifying to meet demands for irrigation, urban supply, industrialization, and, in some instances, electrical power generation. In response to hydroclimatic variability, surface water is being substituted with groundwater, which must be viewed as a strategic resource for climate adaptation. In this sense, the supply of electricity for pumping is an adaptation policy tool. Additionally, planning for climate-change mitigation must consider CO 2 emissions resulting from pumping. This paper examines the influence of electricity supply and pricing on groundwater irrigation and resulting emissions, with specific reference to Mexico-a climate-water-energy 'perfect storm'. Night-time power supply at tariffs below the already-subsidized rates for agricultural groundwater use has caused Mexican farmers to increase pumping, reversing important water and electricity conservation gains achieved. Indiscriminate groundwater pumping, including for virtual water exports of agricultural produce, threatens the long-term sustainability of aquifers, non-agricultural water uses, and stream-aquifer interactions that sustain riparian ecosystems. Emissions resulting from agricultural groundwater pumping in Mexico are estimated to be 3.6% of total national emissions and are equivalent to emissions from transporting the same agricultural produce to market. The paper concludes with an assessment of energy, water, and climate trends coupled with policy futures to address these challenges.
The aim of this study is to identify temporal and spatial variability patterns of annual and seasonal rainfall in Mexico. A set of 769 weather stations located in Mexico was examined. The country was divided into 12 homogeneous rainfall regions via principal component analysis. A Pettitt test was conducted to perform a homogeneity analysis for detecting abrupt changes in mean rainfall levels, and a Mann‐Kendall test was conducted to examine the presence of monotonically increasing/decreasing patterns in the data. In total, 14.4% of the annual series was deemed nonstationary. Fourteen percent of the samples were nonstationary in the winter and summer, and 9% were nonstationary in the spring and autumn. According to the results, the nonstationarity of some seasonal rainfall series may be associated with the presence of atmospheric phenomena (e.g., El Niño/Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation). A rainfall frequency analysis was performed for the nonstationary annual series, and significant differences in the return levels xfalse^T can be expected for the scenarios analyzed. The identification of areas that are more susceptible to changes in rainfall levels will improve water resource management plans in the country, and it is expected that these plans will take into account nonstationary theory.
Six regions in Mexico, with typical interannual changes in the aridity index, have been defined by the 1951–2001 meteorological dataset. Peak months of rainfall differ within the regions. Most of the land in the Mexican terrain has had a slow aridization since the early 1980s. The decline in the aridity index in the early 1950s and late 1990s was caused by droughts in the area. The distinctive features of the aridization of Mexican dry lands are characterized by steady and extensive droughts during 1948–57, 1960–65, and 1994–2003 in the second half of the twentieth century. During the drought of 1951–57 substantial aridization in most of the dry lands was observed, including the Sierra Madre Occidental, Sierra Madre Oriental, and Mexican Altiplano. Aridization of dry lands during the drought in 1960–65 affected mostly the southern part of the Mexican Altiplano, the Sierra Madre del Sur, and the Yucatán Peninsula. For the drought in the 1990s, one special feature of the aridization was its propagation primarily beyond the Mexican Altiplano. Increased aridization of dry lands caused by long-term droughts during the last decade of the twentieth century did not result in a sizeable shift of the southern boundary of the dry lands. The only exception is the southern boundary (aridity index = 0.75) in the state of Sinaloa. In this area, the boundary moved southward and aridization intensified. The results obtained here can be used in studies of possible anthropogenic impact on the drought of the twentieth century’s last decade in Mexico, which includes changes in land use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.