Regional prediction of deoxynivalenol contamination in spring oats in Sweden using machine learning
Xinxin Wang,
Thomas BÖRJESSON,
Johanna Wetterlind
et al.
Abstract:Weather conditions and agronomical factors are known to affect Fusarium spp. growth and ultimately deoxynivalenol (DON) contamination in oat. This study aimed to develop predictive models for the contamination of spring oat at harvest with DON on a regional basis in Sweden using machine-learning algorithms. Three models were developed as regional risk-assessment tools for farmers, crop collectors, and food safety inspectors, respectively. Data included weather data from different oat growing periods, agronomic… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.