The first technical discussions, held in 1958, on methods of verifying compliance with a treaty banning nuclear explosions, concluded that a monitoring system could be set up to detect and identify such explosions anywhere except underground: the difficulty with underground explosions was that there would be some earthquakes that could not be distinguished from an explosion. The development of adequate ways of discriminating between earthquakes and underground explosions proved to be difficult so that only in 1996 was a Comprehensive Nuclear Test Ban Treaty (CTBT) finally negotiated. Some of the important improvements in the detection and identification of underground teststhat is in forensic seismology-have been made by the UK through a research group at the Atomic Weapons Establishment (AWE). The paper describes some of the advances made in identification since 1958, particularly by the AWE Group, and the main features of the International Monitoring System (IMS), being set up to verify the Test Ban.Once the Treaty enters into force, then should a suspicious disturbance be detected the State under suspicion of testing will have to demonstrate that the disturbance was not a test. If this cannot be done satisfactorily the Treaty has provisions for on-site inspections (OSIs): for a suspicious seismic disturbance for example, an international team of inspectors will search the area around the estimated epicentre of the disturbance for evidence that a nuclear test really took place.Early observations made at epicentral distances out to 2,000 km from the Nevada Test Site showed that there is little to distinguish explosion seismograms from those of nearby earthquakes: for both source types the short-period (SP: *1 Hz) seismograms are complex showing multiple arrivals. At long range, say 3,000-10,000 km, loosely called teleseismic distances, the AWE Group noted that SP P waves-the most widely and well-recorded waves from underground explosions-were in contrast simple, comprising one or two cycles of large amplitude followed by a low-amplitude coda. Earthquake signals on the other hand were often complex with numerous arrivals of similar amplitude spread over 35 s or more. It therefore appeared that earthquakes could be recognised on complexity.Later however, complex explosion signals were observed which reduced the apparent effectiveness of complexity as a criterion for identifying earthquakes. Nevertheless, the AWE Group concluded that for many paths to teleseismic distances, Earth is transparent for P signals and this provides a window through which source differences will be most clearly seen. Much of the research by the Group has focused on understanding the influence of source type on P seismograms recorded at teleseismic distances. Consequently the paper concentrates on teleseismic methods of distinguishing between explosions and earthquakes.One of the most robust criteria for discriminating between earthquakes and explosions is the m b : M s criterion which compares the amplitudes of the SP P waves as measured ...