Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
ISI-MIP | WaterMIPT errestrial water fluxes are affected by both climate and direct human interventions, e.g., dam operations and water withdrawals. Climate change is expected to alter the water cycle and will subsequently impact water availability and demand. Several hydrologic modeling studies have focused on climate change impacts on discharge in large river basins or global terrestrial areas under naturalized conditions using a single hydrologic model forced with multiple climate projections (1, 2). Recently, hydrological projections from eight global hydrological models (GHMs) were compared (3). In many areas, there was a large spread in projected runoff changes within the climate-hydrology modeling chain. However, at high latitudes there was a clear increase in runoff, whereas some midlatitude regions showed a robust signal of reduced runoff. The study also concluded that the choice of GHM adds to the uncertainty for hydrological change caused by the choice of atmosphere-ocean general circulation models (hereafter called GCMs) (3). Expected runoff increases in the north and decreases in parts of the middle latitudes have been found also when analyzing runoff from 23 GCMs (4).These studies focused on the naturalized hydrological cycle, i.e., the effects of direct human interventions were not taken into account. However, in many river basins humans substantially alter the hydrological cycle by constructing dams and through water withdrawals. Reservoir operations alter the timing of discharge, although mean annual discharge does not necessarily change much. A study with the water balance model (WBM) showed that the impact of human disturbances, i.e., dams and water consumption, in some river basins is equal to or greater...