Alkenes are an important class of compounds common among biologically active molecules and often used as intermediates in organic synthesis. Many alkenes exist in two stereoisomeric forms (E and Z), which have different structures and different properties. The selective formation of the two isomers is an important synthetic goal that has long inspired the development of new synthetic methods. However, the efficient synthesis of diastereopure, thermodynamically less stable, Zalkenes is still challenging. Here, we demonstrate an efficient synthesis of diastereopure Z-alkenes (Z:E > 300:1) through a silver-catalyzed hydroalkylation of terminal alkynes, using alkylboranes as coupling partners. We also describe the exploration of the substrate scope, which reveals the broad functional group compatibility of the new method. Preliminary mechanistic studies suggest that a 1,2-metallate rearrangement of the silver borate intermediate is the key step responsible for the stereochemical outcome of the reaction.