Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The ability of soybean breeders to accurately, economically, and rapidly determine the transfer of the CP4 gene, the gene which confers soybean tolerance to the herbicide glyphosate, to elite soybean lines is essential to development of new glyphosate tolerant soybean (GTS) cultivars. This research focused on a simple greenhouse screening procedure to replace large, costly, and laborious field screening. Non-GTS seed was determined to be susceptible to soaking in a 1% glyphosate solution for 4 h. This process is quicker, more efficient, and as reliable as field screening for determination of glyphosate susceptibility in soybean seed. Furthermore, this research clearly demonstrates that the metabolic pathway of glyphosate activity, the shikimate acid pathway, is active, and the target enzyme of glyphosate, 5-enol-pyruvyl-shikimate-3-phosphate synthase, is present during seed germination.
The ability of soybean breeders to accurately, economically, and rapidly determine the transfer of the CP4 gene, the gene which confers soybean tolerance to the herbicide glyphosate, to elite soybean lines is essential to development of new glyphosate tolerant soybean (GTS) cultivars. This research focused on a simple greenhouse screening procedure to replace large, costly, and laborious field screening. Non-GTS seed was determined to be susceptible to soaking in a 1% glyphosate solution for 4 h. This process is quicker, more efficient, and as reliable as field screening for determination of glyphosate susceptibility in soybean seed. Furthermore, this research clearly demonstrates that the metabolic pathway of glyphosate activity, the shikimate acid pathway, is active, and the target enzyme of glyphosate, 5-enol-pyruvyl-shikimate-3-phosphate synthase, is present during seed germination.
This study explored the feasibility of near-infrared (NIR) quantitative and qualitative models for soybean inorganic phosphorus (Pi), which is complementary to phytic acid, a component of nutritional and environmental importance. Spectra, consisting of diffuse reflectance (1100-2500 nm) of ground meal and single-bean transmittance (600-1900 nm) of whole seed, were collected on 191 recombinant inbred soybean lines. Partial least-squares regression models were individually developed for soy meal diffuse reflectance, single-bean transmittance, and averaged (24 beans/line) whole seed transmittance data. The best performance was obtained with diffuse reflectance data, in which the standard errors (rmsd) were 263 and 248 mg/kg for cross-validation and validation sets, respectively. Model accuracy was lower for the 24-bean average transmittance spectra and still lower for single beans. Despite the overall poorer modeling ability of Pi with respect to the common macronutrient NIR regressions, such as those for protein and oil, this technique holds promise for use in breeding programs.
Because of increased seed costs for soybean [Glycine max (L.) Merr.], minimizing plant population to a level that still optimizes yield (minimal optimal plant population) has become important. Because little is known about possible genotypic strategies addressing this problem, the objectives of this study were to (i) determine the relative accuracy of three putative selection criteria for genotypic differences in minimal optimal plant population and (ii) use the best criterion to identify cultivar differences within the southern U.S. public cultivar germplasm collection. Two studies to address these objectives were conducted near Baton Rouge, LA (30° N lat). The first study (in 2007 to 2008) involved eight cultivars grown at normal (198,000 plants ha−1) and sparse plant populations (10,000 plants ha−1). Cultivar potential for a low minimal optimal plant population was assessed by relative yield (%) in sparse vs. normal plant population. Normalized branch dry matter (BDM) per plant (BDM per days to R5) was the most accurate selection criterion for minimal optimal plant population. This criterion was then used in a second study to assess minimal optimal plant population differences among 41 cultivars. Wide differences in normalized BDM per plant occurred, ranging from 0.10 to 1.50 g per plant d−1. In conclusion, normalized BDM per plant is an accurate and efficient selection measure for minimal optimal plant population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.