Key message
A novel QTL, Q.DB.ui-7DS, and the PCR-based markers identified in the current study will accelerate variety development for resistance to dwarf and common bunt of wheat.
AbstractDwarf bunt [Tilletia controversa J.G. Kühn [as ‘contraversa’], in Rabenhorst, Hedwigia 13: 188 (1874)] is a destructive disease of wheat (Triticum aestivum L.) that reduces grain yield and quality. A number of distinct genes conferring resistance to dwarf bunt have been used by breeding programs for nearly 100 years. However, few markers were identified that can be used in selection of dwarf bunt resistance. A recombinant inbred line (RIL) population derived from the bunt-resistant germplasm, Idaho 444 (IDO444), and the susceptible cultivar, Rio Blanco, was evaluated for phenotypic reaction to dwarf bunt inoculation in four trials in two locations (USU and USDA) over 3 years. The population was genotyped with the Diversity Arrays Technology (DArT) and the Illumina Infinium 9K iSelect marker platforms. A total of three QTL were detected, and resistant alleles were from IDO444. QTL Q.DB.ui-7DS on 7DS was determined based on the location of a DArT marker wPt-2565 (X116197), which was consistently detected and explained 32 to 56 % of phenotypic variation among the four trials. QTL Q.DB.ui-1A on 1A was detected in three Utah State University (USU) trials and explained 11–15 % of phenotypic variation. QTL Q.DB.ui-2B on 2B was detected in two USU and one United States Department of Agriculture (USDA) trials and explained up to 6 % of phenotypic variation. Two PCR-based markers were developed based on the sequence of wPt-2565 and validated in the RIL population and used in genotyping of dwarf bunt differential lines, known resistance sources, and resistant cultivars.