2022
DOI: 10.48550/arxiv.2201.07612
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ReGNL: Rapid Prediction of GDP during Disruptive Events using Nightlights

Abstract: Policy makers often make decisions based on parameters such as GDP, unemployment rate, industrial output, etc. The primary methods to obtain or even estimate such information are resource intensive and time consuming. In order to make timely and well-informed decisions, it is imperative to be able to come up with proxies for these parameters which can be sampled quickly and efficiently, especially during disruptive events, like the COVID-19 pandemic. Recently, there has been a lot of focus on using remote sens… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?