2018
DOI: 10.1515/jem-2016-0007
|View full text |Cite
|
Sign up to set email alerts
|

Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
2
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
3

Relationship

2
1

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 34 publications
0
2
0
Order By: Relevance
“…Throughout the main text we focus on the case where the researcher implements a local linear model to estimate τZ and a quadratic model to approximate the bias term. The proofs presented in the appendix for the validity of the bootstraps proposed include the general case in which higher-order polynomials can be used to obtain τZ or a higher-order bias correction is implemented, e.g.,Bartalotti (2018).5 SeeFan and Gijbels (1996) for discussions on the boundary properties of local polynomial regression. SeeGelman and Imbens (2018) for discussions on the choices of global and local polynomial regression and its order.…”
mentioning
confidence: 99%
“…Throughout the main text we focus on the case where the researcher implements a local linear model to estimate τZ and a quadratic model to approximate the bias term. The proofs presented in the appendix for the validity of the bootstraps proposed include the general case in which higher-order polynomials can be used to obtain τZ or a higher-order bias correction is implemented, e.g.,Bartalotti (2018).5 SeeFan and Gijbels (1996) for discussions on the boundary properties of local polynomial regression. SeeGelman and Imbens (2018) for discussions on the choices of global and local polynomial regression and its order.…”
mentioning
confidence: 99%
“…In Hahn et al (2001) this is described in Assumption (A3) and is required for the identification and interpretation of the estimand as a LATE.7 Throughout the main text we focus on the case where the researcher implements a local linear model to estimate τ Z and a quadratic model to approximate the bias term. The proofs presented in the online appendix for the validity of the bootstraps proposed include the general case in which higher-order polynomials can be used to obtain τ Z or a higher-order bias correction is implemented, e.g.,Bartalotti (2018).8 SeeFan and Gijbels (1996) for discussions on the boundary properties of local polynomial regression. SeeGelman and Imbens (2018) for discussions on the choices of global and local polynomial regression and its order.…”
mentioning
confidence: 99%