SUMMARY1. The ecological health of rivers worldwide continues to decline despite increasing effort and investment in river science and management. Bayesian belief networks (BBNs) are increasingly being used as a mechanism for decision-making in river management because they provide a simple visual framework to explore different management scenarios for the multiple stressors that impact rivers. However, most applications of BBN modelling to resource management use expert knowledge and/or limited real data, and fail to accurately assess the ability of the model to make predictions.2. We developed a BBN to model ecological condition in a New Zealand river using field/GIS data (from multiple rivers), rather than expert opinion, and assessed its predictive ability on an independent dataset. The developed BBN performed moderately better than a number of other modelling techniques (e.g., artificial neural networks, classification trees, random forest, logistic regression), although model construction was more time-consuming. Thus the predictive ability of BBNs is (in this case at least) on a par with other modelling methods but the approach is distinctly better for its ability to visually present the data linkages, issues and potential outcomes of management options in real time. We have demonstrated this for a BBN of ecological condition in a New Zealand river, shown that model fit is better than that for other modelling techniques, and that improving habitat would be equally effective to reducing nutrients to improve ecological condition.