2002
DOI: 10.1090/s0002-9939-02-06697-2
|View full text |Cite
|
Sign up to set email alerts
|

Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations

Abstract: Abstract. In this paper we consider the Cauchy problem for the n-dimensional Navier-Stokes equations and we prove a regularity criterion for weak solutions involving the summability of the pressure. Related results for the initial-boundary value problem are also presented.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
77
0
3

Year Published

2005
2005
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 157 publications
(81 citation statements)
references
References 26 publications
1
77
0
3
Order By: Relevance
“…Uniqueness and regularity criterion based on fluid vorticity and electrical current in BMO and Besov spaces. Similarly to the case of the Navier-Stokes equations [2,4,19,31], we establish the uniqueness or regularity criterion for the MHD system (1.1)-(1.4).…”
Section: )mentioning
confidence: 99%
See 3 more Smart Citations
“…Uniqueness and regularity criterion based on fluid vorticity and electrical current in BMO and Besov spaces. Similarly to the case of the Navier-Stokes equations [2,4,19,31], we establish the uniqueness or regularity criterion for the MHD system (1.1)-(1.4).…”
Section: )mentioning
confidence: 99%
“…One natural problem is to find suitable conditions which assure the uniqueness and regularity of the weak solutions for the MHD equation (1.1)- (1.4). Similarly to the cases of Navier-Stokes equations [2,4,21], Wu in [33] proved a regularity result for general classical weak solutions for the MHD equations in R 3 by energy integral estimates. More precisely, let (u 0 (x), b 0 (x)) ∈ L p (R 3 ) ∩ H 1 (R 3 ) with p > 3, and assume that (u(x, t), b(x, t)) ∈…”
mentioning
confidence: 93%
See 2 more Smart Citations
“…С другой стороны, π при малых r имеет порядок r 2 |∇u| 2 . Для 3-мерных уравнений Навье-Стокса несжимаемой жидкости хорошо известны критерии регулярности [1], [7]. Если бы давление удовлетворяло тем же оценкам, что и β, отсюда легко следовала бы регулярность решений 3-мерных уравнений Навье-Стокса.…”
Section: Introductionunclassified