2022
DOI: 10.3390/math10152600
|View full text |Cite
|
Sign up to set email alerts
|

Regularity Properties and Lipschitz Spaces Adapted to High-Order Schrödinger Operators

Abstract: Let be the high-order Schrödinger operator (−Δ)2+V2, where V is a non-negative potential satisfying the reverse Hölder inequality (RHq), with q>n/2 and n≥5. In this paper, we prove that when 0<α≤2−n/q, the adapted Lipschitz spaces Λα/4 we considered are equivalent to the Lipschitz space CLα associated to the Schrödinger operator L=−Δ+V. In order to obtain this characterization, we should make use of some of the results associated to (−Δ)2. We also prove the regularity properties of fractional powers (pos… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?